Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The expansion of renewable electricity generation, growing demands due to electrification, greater prevalence of working from home, and increasing frequency and severity of extreme weather events, will place new demands on the electric supply and distribution grid. Broader adoption of demand response programs (DRPs) for the residential sector may help meet these challenges; however, experience shows that occupant overrides in DRPs compromises their effectiveness. There is a lack of formal understanding of how discomfort, routines, and other motivations affect DRP overrides and other related human building interactions (HBI). This paper reports preliminary findings from a study of 20 households in Colorado and Massachusetts, US over three months. Participants responded to ecological momentary assessments (EMA) triggered by thermostat interactions and at random times throughout the day. EMAs included Likert-scale questions of thermal preference, preference intensity, and changes to 7 different activity types that could affect thermal comfort, and an opened ended question about motivations of such actions. Twelve tags were developed to categorize motivation responses and analyzed statistically to identify associations between motivations, preferences, and HBI actions. Reactions to changes in the thermal environment were the most frequently observed motivation, 118 of 220 responses. On the other hand, 47% responses were at least partially motivated by non-thermal factors, suggesting limited utility for occupant behavior models founded solely on thermal comfort. Changes in activity level and clothing were less likely to be reported when EMAs were triggered by thermostat interactions, while fan interactions were more likely. Windows, shades, and portable heater interactions had no significant dependence on how the EMA was triggered.more » « less
-
Tree plantations represent an important component of the global carbon (C) cycle and are expected to increase in prevalence during the 21st century. We examined how silvicultural approaches that optimize economic returns in loblolly pine (Pinus taeda L.) plantations affected the accumulation of C in pools of vegetation, detritus, and mineral soil up to 100 cm across the loblolly pine’s natural range in the southeastern United States. Comparisons of silvicultural treatments included competing vegetation or ‘weed’ control, fertilization, thinning, and varying intensities of silvicultural treatment for 106 experimental plantations and 322 plots. The average age of the sampled plantations was 17 years, and the C stored in vegetation (pine and understory) averaged 82.1 ± 3.0 (±std. error) Mg C ha−1, and 14.3 ± 0.6 Mg C ha−1 in detrital pools (soil organic layers, coarse-woody debris, and soil detritus). Mineral soil C (0–100 cm) averaged 79.8 ± 4.6 Mg C ha−1 across sites. For management effects, thinning reduced vegetation by 35.5 ± 1.2 Mg C ha−1 for all treatment combinations. Weed control and fertilization increased vegetation between 2.3 and 5.7 Mg C ha−1 across treatment combinations, with high intensity silvicultural applications producing greater vegetation C than low intensity (increase of 21.4 ± 1.7 Mg C ha−1). Detrital C pools were negatively affected by thinning where either fertilization or weed control were also applied, and were increased with management intensity. Mineral soil C did not respond to any silvicultural treatments. From these data, we constructed regression models that summarized the C accumulation in detritus and detritus + vegetation in response to independent variables commonly monitored by plantation managers (site index (SI), trees per hectare (TPH) and plantation age (AGE)). The C stored in detritus and vegetation increased on average with AGE and both models included SI and TPH. The detritus model explained less variance (adj. R2 = 0.29) than the detritus + vegetation model (adj. R2 = 0.87). A general recommendation for managers looking to maximize C storage would be to maintain a high TPH and increase SI, with SI manipulation having a greater relative effect. From the model, we predict that a plantation managed to achieve the average upper third SI (26.8) within our observations, and planted at 1500 TPH, could accumulate ~85 Mg C ha−1 by 12 years of age in detritus and vegetation, an amount greater than the region’s average mineral soil C pool. Notably, SI can be increased using both genetic and silviculture technologies.more » « less
An official website of the United States government

Full Text Available